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We carry out a structural analysis of the Lie group S0(5, 1) by obtaining its 
Iwasawa factorization. The lwasawa factorization at the Lie algebra level is also 
obtained. 

1. I N T R O D U C T I O N  

The Lie group SO(5, 1) has been involved in cosmological models. 
Here we give its structural properties, as well as those of  its associated Lie 
algebra so(5, 1). 

The paper  is organized as follows: In Section 2, we calculate the 
maximal ideal or the maximal  invariant subgroup of S0(5 ,  1) and so(5, 1), 
the nilpotent Abelian subalgebra and subgroup, the Abelian subgroup and 
subalgebra, the eigenvalue spectrum, and the eigenfunctions of  so(5, 1) as 
well as its hyperplanes,  and the Weyl chambers. In Section 3, the Iwasawa 
decomposit ions of  the Lie group S0(5 ,  1) and the algebra so(5, 1) are 
obtained. 

2. T H E  N I L P O I N T  ABELIAN, T H E  ABELIAN, AND T H E  
MAXIMAL INVARIANT S U B G R O U P  OF SO(5, 1) AND so(5, 1) 

To the general pseudo-orthogonal  Lie group SO(n - s ,  s) we can intro- 
duce the corresponding Lie algebra (Gourdin,  1967) as 

[ Z, j ,  Z~, ]  = gj~Z,, - g , ~ ,  + g,,Zj~ - gj,Z,~ ( I )  
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with Z U = -Z~ .  We specialize to the case of  the Lie group SO(5, 1) and the 
Lie algebra so(5, 1) by putting g~ = gi3q, so that 

g l  = g2 = 23 = g4 = g5 = - - 2 6  = 1 

The infinitesmal generators of  S0(5,  1) may be chosen as 

212, 213, 214, 215, 223, 224, 225 , 226 , 234 , 235 , 245 , 246 , 256 (2) 

which are reordered respectively as 

Zli = Xi-1, 

22~ = x3+, .  

23, = x6+, .  

24, = x 8 + .  

256 = X15 

Writing explicitly (3) gives 

i = 2 , 3 , 4 ,  5,6 

i = 3, 4, 5, 6 

i = 4 ,  5,6 

i = 5 , 6  

Z12 = X1,  Z13 = X 2 ,  214 = X3,  2 1 5  = X 4 

216 -~ X5,  223 = X6,  224 = X7,  2 2 5  = X 8 

226 = X9,  234 = Xlo  , 235 = X l l  , 236 = X12 

245 ~- X13 , 246 ~-- X14 , 256 = X15 

(3) 

(4) 

where 

X,, Xj ~ so(5, 1), Ad Xi = (C~)jk (6) 

(i,j, k =  1, 2 , . . . ,  n; n = 15, and C,jk are the structure constants. The gen- 
erators of  so(5, 1) can be separated into two sets, depending on whether 

2.1. The Killing Forms of the Generators of so(5, 1) 

The structure constants of  the Lie algebra can be deduced from 
equations (2.5). From these constants, one constructs the adjoint matrix 
operators associated with the generators. 

The Killing form associated with the generators X~ and Xj of  so(5, 1) 
is 

B(Xj, Xj) = Trace(Ad Xg Ad Xj) (5) 

These generators close on the Lie algebra so(5, 1) defined by the commuta-  
tion relations of  Table I, in which [Xi, Xj] = CukXk, with Cu -- q: k, 0 for 
[Xi, Xj] = • Xk, and the corresponding adjoint matrices for the generators 
can be read off from Table I. 
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they have negative-defini te  or posit ive-definite Kil l ing forms ( H e r ma nn ,  
1966; Helgason,  1962; Strom, 1971; Pontryagin ,  1969; Nagel, 1969). Thus,  

B(Xi, Xi )=-8 ,  i = 1, 2, 3, 4, 6, 7, 8, 10, 11, 13 (7) 

B(Xi, X~) = +8, i = 5, 9, 12, 14, 15 (8) 

We denote  by LK and  P the sets of generators  with negative- and  

posit ive-definite Kil l ing forms, respectively: 

LK ={X,,  X2, X3, X4, X6, )(7, X8, Xlo, Xl,, X13} (9) 

P -~- {Xs, X9, Xl2 , X14, ~ X15 } (10) 

The elements  of  P close on a n i lpotent  subalgebra  of so(5, 1), while those 
of  LK form the maximal  compact  subalgebra  of so(5, 1) or the maximal  

ideal of  so(5, 1) (Pontryagin ,  1969). The compact  subalgebra  LK is iso- 
morph ic  to so(5, R). The commuta t ion  relat ions defining LK are given 

in Table  II. The generators  of  so(5, R) are given by 

2 2 

(p, r = 1, 2, 3, 4; r>p). These are explictly realized as 

212 ~ X l ,  213 ~ X2, 214 ~ 2 3 ,  215 ~ X4, 223 ~ X6, 
(1l)  

Z24 ~--- X7~ , X25 ~-- Xs ,  Z34 = Xlo,  Z36 ~ X l l ,  Z45 -~- X13 

These close on  the Lie algebra so(5, R). Therefore LK is i somorphic  to 

so(5, g). 

Table II. Commutation Relations and the Structure Constants for the Maximal Compact 
Subalgebra so(5, R)==- L K of so(5, 1) 

//•j X~ )(2 )(3 X4 X~ X7 X8 X~ 0 X~, X~ 3 

X1 0 -6 -7 -8 +2 +3 +4 0 0 0 
)(2 +6 0 -10 -11 -1 0 0 +3 +4 0 
)(3 +7 +10 0 -13 0 -1 0 -2 0 +4 
)(4 +8 +11 +13 0 0 0 -1 0 -2 -3 
X6 -12 +1 0 0 0 -10 -11 +7 +2 0 
)(7 -3 0 +1 0 +10 0 -13 -6 0 +8 
X s -4 0 0 +1 +11 +12 0 0 -6 -7 
Xlo 0 -3 +2 0 -7 +6 0 0 -13 +14 
XH 0 -4  0 +2 -2 0 +6 +13 0 -10 
X~3 0 0 -4  +3 0 -8 +7 -14 +10 0 
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Table III 

X 5 X 9 XI2 XI4 X15 

X 5 0 + 1 +2 +3 +4 

X 9 -1  0 +6 +7 +8 
X~2 - 2  - 6  0 +10 +11 

XI4 - 3  - 7  - 1 0  0 +13 

Xls - 4  - 8  -11  -13  0 

One checks that between the elements of P and LK the following hold: 

[LK, P] c p, [p, p]  c LK (12) 

[LK, LK]cLK, B(P, LK)=B(LK, P)=O (13) 

Relations (12) show that the subspace P is orthogonal to the subspace LK 
with respect to the Killing form. Algebraically, the result implies that one 
can write 

so(5, 1) = LK q- P 
(14) 

= so(5, R)+P 

giving us the first-stage decomposition of so(5, 1). 
We can now determine the structure of the subset P of so(5, 1). The 

elements of  P that mutually commute form the maximal Abelian subalgebra 
of P. We denote this subset of  P by LA, SO that LAC P. We define L A 

La: [X, Y ] = 0 ,  X, YELA, LACP (15) 

The commutation relations of the elements of P are given in Table III. We 
find that no two generators commute, so that we can arbitrarily choose 

LA = X5 (16) 

In the general case, one denotes the number of  the elements of LA by l, so 
that LA = {Hi}, i = 1, 2, 3 , . . . ,  l, where l is the dimension of the Lie vector- 
space of LA. 

2.2. Eigenvalues and Roots of so(5, 1) 

We set up eigenvalue equations for LA as follows: For the set of all 
elements X belonging to the original Lie algebra L so(5, 1), we have 

[H, X] = a (H)X (17) 

where for a given H, a(H) is a real number, known as the eigenvatue of 
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H, and the element X is the eigenfunction of H. In general, there should 
be as many different eigenvalues as there are distinct eigenfunctions. 
However, some eigenvalues may be degenerate, whereby we have multi- 
plicities. The number of different eigenfunctions X having the same eigen- 
value a ( H )  for a fixed H c LA is called the multiplicity or the degeneracy 
of  a ( H ) .  We denote the set of all such degenerate eigenfunctions by LL 
These quantities have to be computed in order to gain more information 
about the structure of the Lie algebra so(5, 1). We first find the set of L ~ 
quantities for the case where any eigenfunctions X have an eigenvalue 
a (H)  = 0. We denote the set of such eigenfunctions X by L ~ corresponding 
to ce(H)= 0, and write 

L ~ = {X, [H, X]  = a ( H ) X  = 0, X ~ so(5, 1)} (18) 

From the commutation relations for so(5, 1), we have, for X5 =- H c LA, 

[Xs, X6] = 0, [Xs, XT] = 0, [Xs, Xs] = 0 
(19) 

[xs,  X,o] = 0, [xs,  x , , ]  = 0, [x~, x,3] = 0 

Equations (19) imply that 

L ~ = {Xs, X6, X7, Xs, Xlo, X , , ,  X,3} (20) 

The centralizer of LA in so(5, 1) is L ~ and it is the maximal Abelian or 
Caftan subalgebra of so(5, 1). The remaining nonzero eigenvalues are called 
roots, and these are determined from the commutation relations of so(5, 1). 
We extract L ~ from L = so(5, 1), to have 

{x, ,  x2, x3, x4, x9, x,2, x,4, x,~} 

The commutation relations of these with Xs give 

[Xs, Xl] = Xg, [Xs, X2] ~- X12, [Xs, X3] = X14 

[Xs,X4]=X,5,  [Xs,Xg]=X~, [Xs,X,2]=X2 (21) 

[x~, x,4] = x3, [x~, x~5] = x4 

None of these is of the format of equation (17). Therefore X~, Xz, X3, X4, 
X9, X12, X14, X15 are not eigenfunctions of Xs. We can try to form suitable 
linear combinations that will be eigenfunctions of Xs. Let 

X l  q- X9  = Q +', X 1 -  X9  = P - 

X2-~- Xt2 = O+; X 2 -  XI2 = Q-- 
(22) 

X3~- X14 = R+; X 3 - X I 4  = R-  

X4 + X15 = S+; X 4 -  X15 = S- 
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These are of  the form (17). Therefore the eigenfunctions of  Xs are P+, Q-~, 
R +, S +, each having an eigenvalue (root) +1, and P- ,  Q-, R-, S-, each 
having an eigenvalue ( r o o t ) - 1 .  We put these in sets: 

L ~+1~ ={P+,  Q+, R +, S +} (23a) 

the root a = +1 having multiplicity 4; and 

L (-*) = {P- ,  Q- ,  R- ,  S-} (23b) 

the root - a  = - 1  having multiplicity 4. The roots of  so(5, 1) are therefore 
given as 

a = + 1 ,  - a  = - 1  

13 - -+1,  - /3 = - 1  

y = + l ,  - y  = - 1  

a = + 1 ,  - 6 =  - 1  

(24) 

The null root has multiplicity 7. The roots are all normalized. I f  we denote 
by A the set of  all roots of  so(5, 1), we have 

so(5, 1) = L~ Y~ L ~ = L~ (25) 

2.3. Hyperplanes and Weyl  Chambers of the Group of so(5, 1) 

The hyperplanes associated with the roots a = +1, /3 = +1, y = + 1 ,  
6 = +1 are simply a null point, which is the origin. These are 

p~ ~- p+,=o; p~---P<=o; P~--- p+, =o; p~-= p+l=O 

We next calculate the Weyl reflection operator  S" for so(5, 1) associated 
with the hyperplane a, where S~ has the following properties: 

(i) S~H = H - a ( H ) H ~  = H - B(H, H ' ) H ~  (H E LA). 
(ii) S~P~ = P~ for any hyperplane P~. 

(iii) S~ = I. 
(iv) B(H,  H) = B(S~H, S~H). 
(v) B(H,  H a ) =  0, for any H lying wholly on the hyperplane P~. 

(vi) S~H~ = - H a .  

Since LA is one-dimensional,  for so(5, 1) one obtains simply that 

X 5 = H ~ LA 

Therefore 

S+Xs=Xs -2Xs=X5;  (S+I)2X5=S.+(--X5)'~--{-X5; etc.  (26) 
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Therefore the Weyl reflection operators consist of S+, S_, and I. The Weyl 
chambers for so (5, 1) are the spaces between any two hyperplanes of so(5, 1) 
in L A. These consists of the line segments 

C+ = (0, +co) and C_ = (0, -co) (27) 

2.4. The Nilpoint Subalgebra of so(5, 1) 

From the commutation relations 

[Xs, P+] = P+; 

[Xs, R +] = R+; 

[ X s ,  P-] = ~P- ;  

[Xs, R-] = - R ;  

[Xs, Q+] = Q+ 

[X~, S +] = S + 

[x s ,  Q-]  = - Q -  

[X~, S-]  = - S -  

(28) 

one obtains that the eigenfunctions of the positive and negative roots are, 
respectively, P+, Q+, R +, and S + and P-, Q-, R-, and S-. A standard 
theorem (Ndili et al., 1975) leads us to the prescription that these positive 
root eigenfunctions form a nilpotent Abelian subalgebra of the parent Lie 
algebra so(5, 1). This Lie subalgebra is denoted by L~ = {P+, Q+, R +, S+}. 
Similarly, P-,  Q-, R-, and S- form a nilpotent Abelian subalgebra LTv. 

3. THE IWASAWA FACTORIZATION OF so(5, 1) AND S0(5 ,  1) 

Having obtained the above detailed information about the structure of 
the Lie algebra so(5, 1), one can complete the problem of decomposition 
of the algebra by appealing to the well-known theorem (Hermann, 1966; 
Helgason, 1962) according to which a Lie algebra L can uniquely be written 
in the form 

L = L• • L A ~  L +)N (29) 

For S0(5,  1) this means 

so(5, 1) = so(5, R) |174 L+,,, ={P+, Q*, R +, S +} (30) 

At the Lie group level, we have the Iwasawa factorization of the connected 
analytic group G - S O ( 5 ,  1), whose corresponding Lie algebra is L-- 
so(5, 1). In general, if K, A, and N § stand for the connected analytic 
subgroups of G that correspond to the Lie subalgebras Lt,:, LA, and L~v, 
respectively, the Iwasawa faetorization of G is 

G =  K.  a .  N + (31) 
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where A is the Abelian subgroup of (7, N + is the nilpotent Abelian subgroup 
of G, and K is the invariant compact subgroup of G. 

�9 These groups can be parametrized in the usual way. We first construct 
suitable matrix representations of the generators of $0(5 ,  1) and later 
parametrize the subgroups A, K, and N § For the matrix representations 
for the generators of S0(5 ,  1), we let A be the matrix generator of the 
pseudo-orthogonal group SO(n - s ,  s). The condition to be satisfied by A is 

A r g A = g  (32) 

where g is the metric connection in the space. We rewrite (32) as 

A r = g A - ~ g  (33) 

and put A = e x, where X is an arbitrary, n x n matrix. Then 

A r = g A - l g  

becomes 

e x~" = ge-Xg -~ = ge-Xg -1 = e-~Xg-1 

or X T - - g X g  -~, giving 

X 7-g + gX  = 0. (34) 

If  the generators of S O ( n -  s, s) are Zij, we have 

ZSg+Zo=O (35) 

where 

with I . -s  as an identity ( n -  s ) •  ( n -  s) matrix, while Is is an identity s x s 
matrix. If  

z~j = Lz3 I Z4_l 
T gZo = 0 gives then Z o g +  

Lz -z3 = (36) 

giving: 

(i) Z~+Z1 = O, or Z~ = - Z I ,  so that Z~ is an antisymmetric matrix 
of  order (n - s )  x (n - s ) .  

(ii) Z2-Z~[=O,  or Z37-=Z2, so that Z2 is an ( n - s ) x s  matrix. 
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(iii) Z4 r = -Z4 ,  so that Z 4 is an antisymmetric matrix of order s x s. 

Therefore 

1.2~1 24J (37) 

For the S0(5 ,  1) we have that Z1 is a 1 x 1 null matrix, Z2 is a null 3 x 1 
matrix, and Z3 = Z f .  In general, we can always choose for the generators 
of  SO(n - s, s) ~- SO(p, q) the matrix representation 

Zq = eo - eji, i, j <- p 

= -eo+eji ,  i , j > p  

= e~ + egi, i<.p, j > p  

= -e~j - e~, i>p ,  j<-p 

(38) 

-0 

1 

0 
X 1 = 

0 

0 

0 

"0 

0 

0 
X3= 1 

0 

0 

-0 

0 

0 
x~= 

0 

0 

0 

- 1  0 0 0 O" 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 - 1  0 O" 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 O" 

0 -1  0 0 0 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

, X2 = 

x~= 

x~= 

"0 0 -1  0 0 O" 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

:0 0 0 0 - 1  0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 o o  o o 6  
0 0 0 -1  0 0 

0 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

where e 0 is the matrix with 1 at the ith row and the j th  column, but otherwise 
zero everywhere. In the case of  SO(5, 1), p = 5, and so Z12, Z13, Z14, Z15, 
Z23, Z24, Z25, Z34, Z35, Z45, Z16, Z26, Z36, Za6, and Z56 are the generators. 
Following the identifications in (3), we calculate explicitly the following: 
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3.1. Parametrization of the Abelian Subgroup A 

I f  an arbitrary element of  A is a, then 

a = exp[ 0X5] ~ I + 0X5 + 0 2 X 2 / 2 ! +  �9 " �9 (40) 

where 0 is an arbitrary real parameter  of  the Lie group A, with -oo_< 0 -< +oo. 
We substitute the matrix representation of X5 in (40) to get 

a . ~ _  

: cosh0  0 0 0 0 s inh0  

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

s i nh0  0 0 0 0 c o s h 0  

(41) 

3.2. The Maximal Compact Subgroup K 

I f  an arbitrary element of  K is k, then 

k = e~176176176176176176176176176176 ~ (42) 

where 0i (i = 1, 2, 3 ,4 ,6 ,  7, 8, 10, 11, 13) are real, bounded parameters.  We 
obtain the following parametrized representations: 

e Oi X l  =. 

"cos01 - s in01  0 0 0 0 

sin 01 cos 01 0 0 0 0 

0 0 1 0 0 0 

0 0 0 t 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

(43) 

eO2X2 = 

"cos 02 0 - s i n  0 2 0 0 0 

0 1 0 0 0 0 

sin 02 0 c o s  0 2 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

(44) 
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e OloXio = 

"1 0 0 0 0 0" 

0 1 0 0 0 0 

0 0 cos01o -s in01o 0 0 

0 0 sin 01o cos 0!o 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

(50) 

eOl lXl l  = 

e o13X13 

-1 0 0 0 0 0- 

0 1 0 0 0 0 

0 0 cos 011 0 - s i n  011 0 

0 0 0 1 0 0 

0 0 sinOu 0 cosO~ 0 

0 0 0 0 0 1 

"1 0 0 0 0 O" 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 cosO~3 -sinO~3 0 

0 0 0 sin 013 COS 013 0 

0 0 0 0 0 l 

(51) 

(52) 

One finally multiplies out the parametrized matrix representation (43)-(52) 
to obtain the parametrized representation of an arbitrary element kaK of 
the maximal compact  subgroup K of SO(5, 1). 

3.3. The Parametrization of N § of SO(5, 1) 

For any arbitrary element n § of  N § we have 

Fl + = edi P+e d2Q+e d3R+e d4S§ 

where the di (i = 1, 2, 3, 4) are 

p §  = 

(53) 

real parameters,  with -oo_< di -< +oo. Now, 

"0 - 1  0 0 0 O" 

1 0 0 0 0 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 1 0 0 0 0 

(54) 
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Finally, 

e d i P  + : .  

e d z Q  + 

ed3 R+ ~_. 

- i  0 0 0 0 - 1 ]  
S +~ = 0 

0 0 0 0 1 

S +3 = a 6 x 6 null matrix 

"l-�89 - d ,  0 0 0 

dl 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 
1 2 ~dl d~ 0 0 0 

" 1 2 1 - 5 d 2  0 -d2  0 0 
0 1 0 0 0 

d2 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 
1 2 
~d  2 0 d 2 0 0 

1 2 - ~ d  3 0 0 - d  3 0 

0 1 0 0 0 

0 0 1 0 0 

d3 0 0 1 0 

0 0 0 0 1 
1 2 ~d 3 0 0 d 3 0 

1 2 
- i d  1 

dl 

0 

0 

0 

1 +�89 2 

1 2 
- ~ d  2 

0 

d2 

0 

0 
1 2 1 q-~d 2 

1 2 - ~ d  3 

0 

0 

a3 

0 
1 2 1 + ~ d  3 

(61) 

(62) 

(63) 

(64) 

e d4 s+ .~_ 

1 2 1 2 
- ~ d  4 0 0 0 - d  4 - ~ d  4 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

d4 0 0 0 1 d4 
1 2 1 2 
~d 4 0 0 0 d4 1 "k-~d 4 

(65) 

Substituting equations (62)-(65) in 
matrix representation of an arbitrary 
subgroup N + of S0(5, 1). 

(53), one obtains the parametrized 
element n + of the nilpotent Abelian 
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Finally, we obtain an arbitrary element g of SO(5, 1) in the para- 
metrized Iwasawa form: 

g = a k n  + (66) 

by substituting from (41), (43)-(52), and (62) into (65). 
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